III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

COMPUTER ORGANIZATION & ARCHITECTURE (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max. Marks		
	UNIT-I						
1	a)	Compare between Harvard and	L2	CO1	5 M		
		Von-Neumann based Computer					
		Architectures.					
	b)	Develop a 4-bit arithmetic circuit using four	L3	CO2	9 M		
		full adders.					
		OR		1	1		
2	a)	List out the microoperations required for the	L3	CO2	9 M		
		following tasks:					
		i) Fetch data from memory to a					
		processor register					
		ii) Transfer data from a processor					
		register to another register					
		iii) Transfer data immediately to a					
		processor register					
	b)	Demonstrate the hardware implementation	L3	CO2	5 M		
		of a 4-bit combinational shifter.					

PVP 20

		UNIT-II					
3	a)	Explain how an instruction cycle can be	L2	CO1	7 M		
		fragmented into different phases and the					
		role of each phase with the help of neat					
	b)	diagram.	12	CO^2	7 M		
	b)	Develop a hardware circuit to fetch the	LS	CO3	/ 1 V1		
		address of a next instruction for a processor which executes three different types of					
		instructions namely, memory reference					
		instructions, register reference instructions					
		and branch instructions.					
		OR	I	<u> </u>	<u> </u>		
4	a)	Illustrate the various phases involved in the	L3	CO2	7 M		
		execution of a interrupt cycle.					
	b)	Demonstrate the common bus system of a	L3	CO3	7 M		
		basic computer.					
		UNIT-III	TO	000	7.14		
5	a)	It is required to perform OR operation	L3	CO3	7 M		
		between two numbers. Suggest and explain					
		suitable addressing modes to fetch the data					
		from source memory locations and store the					
		data into destination locations to accomplish					
	b)	the above task.	13	CO3	7 M		
	b)	Analyze and design a stack memory to be	LJ	COS	/ 11/1		
	OR connected to a computer.						
6	a)	Analyze the role of stack memory in the	L3	CO3	7 M		
		execution of a Interrupt service procedure					
		call when an interrupt occurs in the main					
		program and return to the main program					
		from interrupt service routine.					
		_					

	1.)		т о	002	7 1 1		
	b)	Compare between the various types of	L3	CO3	7 M		
		instructions employed in the design of a					
		Complex Instruction Set Computer.					
		(Hint: One byte, Two byte and Three byte					
		Instructions).					
UNIT-IV							
7	a)	Develop an efficient architecture to design a	L3	CO4	7 M		
		4-bit signed magnitude subtractor.					
	b)	Evaluate the search time involved in Direct,	L4	CO4	7 M		
		Set-Associative and fully associative					
		CACHE memory mapping techniques and					
		show that the set associative mapping is					
		efficient mapping technique over other					
		techniques.					
		OR					
8	a)	On behalf of Government of India, it has	L3	CO4	7 M		
		been announced to distribute 36KGs of food					
		grains in a period of 6 months during					
		COVID19 Pandemic. If certain village has					
		a population of 492 people, compute the					
		quantity of food grains required employing					
		an efficient binary arithmetic architecture.					
	b)	Illustrate the diagram of memory hierarchy	L3	CO2	7 M		
	,	and explain.					
UNIT-V							
9	a)	Compare between Isolated I/O and Interrupt	L2	CO1	4 M		
		driven I/O based data transfer mechanism.					
	b)	It is required to transfer a data of 512MB	L4	CO4	10 M		
	,	from hard disk drive of a computer to flash					
		drive. Suggest a suitable method and the					
		necessary steps required to accomplish the					
		required task with neat diagrams.					

OR						
10	a)	Analyze and explain how Strobed I/O based		CO4	10 M	
		data transfer can be made with the help of				
		neat timing diagrams. Explain how a				
		keyboard can be connected to a processor				
		employing strobed I/O based data transfer.				
	b)	Analyze and explain how Pipelined	L2	CO1	4 M	
		processor based architectures improves the				
		performance of the system.				